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Abstract

Most examples of irreducible holomorphic symplectic manifolds arise as moduli spaces of
sheaves. We will briefly introduce the notion of an irreducible holomorphic symplectic
manifold and then discuss Hilbert schemes, generalised Kummer varieties, moduli of

sheaves and O’Grady’s new examples of symplectic manifolds.
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1 Irreducible holomorphic symplectic manifolds

1.1 Hyperkahler manifolds

A simply connected Riemannian manifold X is called a hyperkahler manifold, if its holonomy
group is the symplectic group Sp(m), dimg(M) = 4m. In this case there exist three complex
structures I, J and K satisfying the relations I? = J? = K? = [JK = —id such that the
metric of X is Kahler with respect to all three complex structures. Hyperkédhler manifolds
arise in the classification of Ricci-flat Kahler manifolds due to the following decomposition
theorem

Theorem 1.1 — Let X be a compact Ricci-flat Kéahler manifold. Then there is a finite
cover X — X such that X is isomorphic to a product

AxY;x...xY, x X, x...xX,

where A is a flat Kahler torus, each Y; is a compact simply-connected manifold with holonomy
SU(n;), a so-called Calabi-Yau manifold, and each X; is a compact simply-connected Hy-
perkéahler manifold.

For detailed information on hyperkahler manifolds, the decomposition theorem and the
relation to the Calabi conjecture I refer to the lecture notes of Joyce in [12]. In this conference
volume the interested reader also finds the lecture notes of Huybrechts on moduli spaces of
hyperkéhler manifolds [14].

It turns out that there are plenty of examples of Calabi-Yau manifolds, but only very few
known examples of compact hyperkahler manifolds. The purpose of this lecture course is to
give an elementary introduction to the known examples in the language of algebraic geom-
etry. This is possible as the differential-geometric notion of a hyperkéahler manifold can be
translated into the algebraic-geometric or complex-geometric notion of an irreducible holo-
morphic symplectic manifold. In the following we will only use that notion. We will discuss
the topology and geometry of these examples and thus hope to provide some background
information for the lecture course of Huybrechts in this summer school.

1.2 Symplectic structures

Let X be a complex manifold and let o € T'(X, Q%) be a global holomorphic 2-form. o is
non-degenerate, if the induced skew-symmetric pairing Ty x Tx — Ox is non-degenerate
at every point x. Equivalently, the adjoint homomorphism & : Tx — x is required to
be an isomorphism. Because of the skew-symmetry, a necessary condition for ¢ to be non-
degenerate is that X be even dimensional, say dim(X) = 2n. Forming 6" = o A... Ao €
(X, 03), we can also express the non-degeneracy of o by saying that o” should be a
nowhere vanishing section of the canonical sheaf Ky = Q3. In particular, another necessary
condition for the existence of a symplectic structure on X is that Ky be trivial.
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Definition 1.2 — A holomorphic 2-form ¢ is said to be a symplectic structure on X, if
do = 0 and if o is non-degenerate.

It is very easy to construct non-compact examples of manifolds with symplectic struc-
tures: Let Y be an arbitrary complex manifold. On the cotangent bundle X :=T*Y — Y,
there is a tautological 1-form 6 € I'(X,Q%). Then ¢ := df is a symplectic structure on X.
It is much harder to find compact examples.

Definition 1.3 — An irreducible holomorphic symplectic manifold is a simply-connected
complex manifold X of Kihler type such that H°(X,Q%) is generated by a symplectic
structure o.

Note that we require that X could be endowed with a Kahler metric but that the Kahler
metric is not part of the structure.

1.3 K3-surfaces

Symplectic manifolds are necessarily even-dimensional. The lowest possible dimension is
two. A glance at Kodaira’s classification of compact Kahler surfaces shows that the only
surfaces with trivial canonical bundle are K3-surfaces and 2-dimensional tori.

Definition 1.4 — A smooth compact complex surface is a K3-surface if H'(Oy) = 0 and
if the canonical bundle is trivial.

Example 1.5 — Let f € Clxg, xy, x9, 23] be a general homogeneous polynomial of degree 4,
and let X C P? be the zero-set of f. By Bertini’s theorem X is a smooth irreducible surface.
The Fubini-Study metric on P? restricts to a Kéhler metric on X. By Lefschetz’ theorem on
hyperplane sections, m;(X) = 0. From the exact sequence

0 — Ops(—4) — Ops — Ox — 0
one gets an exact sequence
— H'(P?,Ops) — H'(X,0x) — H*(P?, Opa(—4)) —
and concludes that H'(X, Ox) = 0. Finally, the adjunction formula implies
Kx = (Kpi® Ops(4))|x = Oy.

Example 1.6 — Let C C P? be a smooth curve of degree 6. Let 7 : X — P? be the 2 : 1-
cover ramified along C'. Explitly X can be constructed as follows: let A = Ox ® Ox(-3)
be the sheaf of algebras where the multiplication Ox(—3) ® Ox(—3) — Oy is given by
the equation of C. Now let X be the relative affine spectrum SpecA. A local calculation
shows that X is non-singular, because C' is a smooth curve. Since 7 is finite, X is projective
and therefore a Kéhler surface. The canonical sheaf of X is Ky = 7" (Kp2 ® Op2(3)) = Ox.
Moreover, H(X,0x) = H'(P*, 7, (Ox)) = H'(P?, Op> ® Op2(—3)) = 0.



The topology of a K3-surface X is completely determined by its definition:

For any compact smooth complex surface X, the Hodge numbers h”7 = dim H(X, Q%)
satisfy the conditions 2k < by = K10+ h%! [1, p. 116]. Therefore, the vanishing assumption
h%' = 0 for a K3-surface implies that h'* = 0 = b;(X). Next, Serre duality implies
that H*(Ox) = H°(Kx)” = C. Hence the holomorphic Euler characteristic is given by
x(Ox) = A" — %™ + h%2 =1 -0+ 1 = 2. Since ¢;(X) = 0, we deduce from Noether’s
formula that the topological Euler-Poincaré characteristic is

e(X) = (X)) = (X)) +1(X)? =12 x(Ox) = 24.

On the other hand we know that b;(X) = 0, and conclude by Poincaré duality that b3(X) = 0.
This fixes the second Betti number: 24 = e(X) =1+ by(X) + 1, and thus by(X) = 22.

Furthermore, H;(X;Z) = 0. For assume on the contrary that { € H,(X;Z) were a
nontrivial element. Since b;(X) = 0, £ must be a torsion element and gives rise to a finite étale
cover f: X' — X of degree, say, d. Then Ky = ¢*Kx = Oy and, because of Serre duality,
one gets h*(Ox/) = h°(Kx/) = 1. Now on the one hand, we have \(Ox:) =2 —h'(Oxs). On
the other hand, the Hirzebruch-Riemann-Roch theorem implies

W) = [ wre) = [ pramo = [ ) = avox) =2

X
This is impossible unless d =1 and £ = 0.

Knowing that H*(X;Z) = 0, it follows that H*(X;Z) is torsion free and hence a unimod-
ular lattice. The lattice is even since wy(X) = ¢(X) = Omod Z/2. Hirzebruch’s signature
theorem implies that

1
b+ —b_ = g(C% — 2C2> = —16.

It follows from the classification of even unimodular lattices that

H2(X;2) = 3( ! ) & 2(~Es).
-1 0
It requires more work to show that an arbitrary K3-surface can be deformed into a smooth
quartic hypersurface as in example 1.5. In particular, all K3-surfaces are diffeomorphic and
hence simply connected, because smooth quartics are simply connected. Finally, a non-
trivial theorem of Siu states that every K3-surface is Kahler. For detailed information on
K3-surfaces I refer to the seminar notes [8] and the text book [1].
Most of the symplectic manifolds that we will encounter in these lectures are based on
constructions on a K3 surface. All others are based on 2-dimensional tori.

1.4 Two dimensional tori

The second surface in Kodaira’'s list of compact Kahler surfaces with trivial canonical divisor
are 2-dimensional tori. A torus is a quotient

A=C*/T
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for a some lattice I' ¢ C2. If T satisfies the Riemann conditions then A is projective. If this
is the case A is called an abelian surface. A 2-dimensional torus is equipped with a unique
symplectic structure (up to constant factors), namely, if z; and 2z, are linear coordinates
on €2, then dz; A dz, is a translation invariant symplectic structure on C? and therefore
descends to a symplectic structure on A.

However, A fails to be irreducible holomorphic symplectic for the trivial reason that it
is not simply connected. In fact, m(A4) = I' = Z*. Nevertheless, complex tori will be very
useful for the construction of higher dimensional symplectic manifolds.

As a warm-up, we recall the construction of non-singular Kummer varieties: The group
Z/2 acts on A by means of the involution

L A— A 1+ —u.

This action is free except for the sixteen 2-torsion points on A. If we pass to the quotient
Y = A/1, each of these fixed points contributes an A;-singularity to Y. Locally near 0 € Y,
we have coordinates
aZZ%? b:ZIZZ, CZZ%?

subject to the relation ac — b* = 0. Let f : K(A) — Y be the blow-up of the singularities.
The exceptional divisors are (—2)-curves.

What happens to the symplectic structure of A7 As o = dz; A dz, is Z/2-invariant it
descends to a symplectic structure o on Y,.,. Near 0, we can write it as

dandb dbAde
2¢  2c

In local coordinates @ and 3 = b/a (with ¢ = 3*a) on K(A) the pull-back of & is given by
%da A dfp. This shows that f*& extends over the exceptional divisors without zeroes and
hence is a symplectic structure on K(A). One can check that m(X) = 0, so K(A) is again
a K3-surface.

o =

2 Hilbert schemes

The first higher dimensional example of an irreducible symplectic manifold was given by
Fujiki, namely the blow-up of the diagonal in S*(X) = X?/&, for a K3-surface X. This
example was generalised by A. Beauville. He showed that all Hilbert schemes Hilb"(X)
of generalised n-tuples of points on a K3-surface X are irreducible holomorphic symplectic
manifolds. Fujiki’s example is the second instance of this series. Beauville also constructed
a second series of so-called generalised Kummer varieties K, (A) by modifying the Hilbert
schemes associated to a 2-dimensional torus A. In this section we will review Beauville’s
constructions and discuss the geometric and topological properties of Hilbert schemes and
generalised Kummer varieties.

2.1 Fujiki’s example

We begin with a special case of the Hilbert scheme and the associated generalised Kummer
variety, namely Hilb?(X) and K;(A). The reason is that for the case of pairs of points all



calculations can be done very explicitly, without introducing general notions, and that at the
same the calculations show almost all phenomena that one meets in the general case. Also
historically, Hilb?(/K'3) was the first higher dimensional irreducible holomorphic symplectic
manifold discovered.

Let X be a connected smooth projective surface. The group Z/2 acts on the product
X x X by exchanging the factors:

L X XX = X x X, (2,29) = (29, 27).
This action is free except along the diagonal
A'={(z,r) |z € X}.

Let p' : Z — X x X be the blow-up of the diagonal, and let E' := o/~ denote the exceptional
divisor. The Z/2 action extends to Z. Let Y := Z/(Z/2) and S*(X) := X x X/(Z/2) denote
the quotient varietes. Thus we have the following diagram

7 2 X xX

y 5 Ss%(X).

The morphism p is the blow-up of S*(X) along A := p(A’) with exceptional divisor £ =
p(E') = p'(A). Note that Y is smooth even though E is the set of fixed points for the
Z/2-action on Z. However, in appropriate coordinates near a point in E, the action looks
like (z1, 29, 23, 24) ¥ (21, 22, 23, —24). The smoothness of Y follows easily.

Lemma 2.1 — m (V) = m(X)/[r (X), m (X)] = m (X)™.

Proof. Let o : [0,1] — X be a path with distinct end points zg := «(0) and x; = «a(1).
Then «ay(t) = (xg, a(t)) and as(t) = (a(t), x) are two paths in X x X that connect (z,2y)
to (w9, 1) and (x1,70), respectively. The path 3 := a; ' * ay then connects (zq,2;) and
(21,70). Note that 3 = (1o 37"). Since A’ has real codimension > 2 there is a path 7 that is
homotopic (relative to the end points) in X x X to  and does not intersect A’. Moreover,
(toy) ™ ~ (10 B)"" = 3 ~~ by a homotopy relativ end points in X x X. But again, as A’
has real codimension > 3 in X x X, we can make this homotopy disjoint from A’. It follows
that v ~ (toy) tin X x X \ F. Since Z\ E' — X x X \ A’ is an isomorphism, we can
think of v as a path in Z \ E’ connecting z := p' ' (29, 2;) and t(2). Then 7 :=p' o~ is a
loop in Y\ E with base point y, := p'(zp) and satisfies

(M) =poy =poroyT =poy=7.

This means that the class 7:=[J] € m (Y \ E, 1) is an element of order 2.
Since A’ has real codimension > 3 in X x X there are isomorphisms

Wl(Z\EI,ZO) i) 7T1(X X X\AI, (l’g,l’l)) i) 7T1(X X X, (Io,l'l))

QY %

— 7T1(X X X, (CL'(),J/'O)) i) 7T1(X,CL'0) X 7T1(X,l'0>.
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On the other hand, p’ : Z\ E' — Y\ X is a regular topological covering with automorphism
group Z/2. Therefore, there is an exact sequence

1 —>7T1(Z\E,,Zo) — WI(Y\E,yo) — Z/2 — 1.

Now by the constrution above, v lifts 4 and has distinct end points. Hence the class 7 of ¥
surjects onto the generator of Z/2. Moreover, 72 = 1. This means that the sequence splits,
that there is an isomorphism

T (Y\E,y) =m(Z\ E', z) X Z/2,

and that 7 acts on the normal subgroup by [v] + [y (tov) *y™']. Now, one can check that
under the isomorphism ay,, this action turns into flipping the factors of 7, (X, z¢)?. Thus we
can summarise the discussion up to now by stating: 7 (Y \ E, o) = m (X, )% x Z/2 with

T([v], [w])7 = ([w], [v]).

Let U be tubular neighbourhood of E and let ¢ : U — E denote the retraction to E.
Then ¢ is a homotopy equivalence and ¢y : U \ E — F is a fibration with fibres homotopy
equivalent to S'. We can choose the set-up above in such a way that y, € U \ E and that ¥
is a generator of the fundamental group of F' = ¢35 (q(yo)).

By the Seifert-van Kampen theorem we obtain (Y, y,) as the push-out

m(U\ E, yp) — m(Y\ E,yp)

! !

m(U, ) = m(E,q(y0)) —  m(Y,v0)
On the other hand we have an exact sequence
L) =mi(F.yo) — m(U\ E,y0) — m(E,q(yo)) — 1.
The image of [§] in 7 (Y \ E, o) is 7. We conclude that

m(Yoyo) = MY\ E,yo) /() = mi (X, @0)" % (7) /(7).

The rest is purely algebraic: for any two elements g and h in 7 (X, zy) we have 7(g,1)7 =
(1,9), and (g,1) and (1,h) commute. Thus introducing the relation 7 = 1 leads to an
identification (g,1) ~ (1, g) and makes the resulting class commute with (h,1). This shows
that the homomorphism 7 (X, 20)% x (Z/2)/{() — m(X,20)*", (g,h,t) — [gh], is an
isomorphism. O

Lemma 2.2 — H°(Y,Q}) = H°(Q%) ® A’H°(Q%). Moreover, if o is a symplectic structure
on X, then the form oy induced on 'Y by this isomorphism is again a symplectic structure.

Proof. The quotient map p’ : Z — Y induces an injective linear map p* : T'(Y,Q}) —
T'(Z,9%)%/2 into the invariant part of the space of holomorphic forms. This map is surjective:
this is clearly a local question. Let z € E C Z be an arbitrary point. We can choose local



coordinates ey, eq, €3, 2 such that the e; are invariant, z — —z, and F = {z = 0}. A Z/2-
invariant holomorphic 2-form v can be written as

V=Y tyde; Adej+ Y zdz Ade;,

P> i

where 1;; and ¢; are invariant holomorphic functions. As such, they are functions in e;,
ey, 3 and e4 := z%. Now e;, i = 1,...,4, are local coordinates near p'(z) € Y. As zdz =
1p™(dey), we see that there is a holomorphic 2-form 1 such that ¢» = p™*¢. This shows:
T(Y,Q%) — T(Z,Q%)%/2

On the other hand, the blow-up map p' : Z — X x X induces a homomorphism p"™* :
['(X x X,0%) = I'(Z,9%). This is an isomorphism. To see surjectivity note that for any
¢ € T'(Z,9%) the restriction ¢l 2\ 18 a section of Qx, x|xxx\a- But since A’ has complex
codimension > 2, this section extends to all of X x X. This shows:

D(Z,93) = T(X x X, Q) = priT (X, 0%) & pral (X, %) & (priT (X, 2%) & pril'(X,21)),
Z/2 acts on this space as follows:
Cprie) =pra—i(e), o (prio @ pryf) = —prif @ pro.

Hence the invariant part is isomorphic to I'(X, Q%) @ A’T(X, Q%).

Let 0 € I'(X, Q%) be a symplectic structure. Then oy, x = pri(c)+prs(o) is a symplectic
structure on X x X. Suppose that z,w are local coordinates at + € X. Then we can write
o = f(z,w)dz Adw with some holomorphic function f such that f(0,0) # 0. Let z; := zopr;
and w; := w o pr; be the associated coordinates near (z,z) € X x X. Then

Oxx = 2f (21, w1) f (22, wo)dzy A dwy A dzy A dws,.

Note that u = (z; + 25)/2 and v = (w; + wy)/2 are invariant coordinates, whereas s =
(21 — 22)/2 and t = (w; — w;)/2 change signs under the Z/2 action. In a local chart of Z we
may write ¢t = st for an even coordinate ¢.Then

dzy =du+ds, dz=du—ds, dw, =dv+dst+sdt, dws=dv—dst—sdt.
Expressing o, := p"ox«x in these coordinates we see that
0y = f(u+s,v+st)f(u—s,v—st)dsds AduAdi A dv.

The coefficient function is an even function with respect to s and can therefore be expressed
as a function in u,v,t and s’ := s?. Thus

oy = 2g(u,v,t,5")ds' AduAdtAdv.

But u,v,t,s are coordinates on Y. This shows that o, descends to 2-form on Y that is
non-degenerate. 0

If we specialise to K3-surfaces we get our first higher dimensional irreducible holomorphic
symplectic manifold:
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Theorem 2.3 — Let X be a K3-surface. Then 7,(Y) = 0 and H*(Y,Q3}) = Coy for a
symplectic structure oy. In particular, Y is an irreducible holomorphic symplectic manifold.

For completeness, let us compute the cohomology of Y:

Lemma 2.4 — H*(Y,Q) = S’H*(X;Q) @ H*(X;Q) - [E].

Here the symmetric product is to be taken in the graded sense, as will become clear in
the proof.
Proof. According to the Kiinneth formula, H*(X x X;Q) = H*(X; Q) ® H*(X; Q). Blowing
up the diagonal gives

H*(Z;Q) = H'(X;Q) ® H*(X;Q) ® H*(A;Q) - [E],

where [E] is the cohomology class Poincaré dual to the fundamental class of the divisor E.
The group Z/2 acts trivially on the second factor and interchanges the first two factors. We
obtain the rational cohomology of Y as the invariant part of H*(Z;Q). This proves the
lemma. However, we have to be careful about the signs here: For example,

H*(Z;Q) =1 H*(X;Q @ H*(X;Q @1 H'(X;Q) ® H'(X;Q) & Q[E].

The involution exchanges the first two summands, exchanges the two factors of the third
summand, introducing a (—1) sign at the same time, and leaves the last summand fixed. It
follows:

H*(Y;Q) = H*(X;Q) & A°H'(X;Q) & CE].

More generally, if we split the cohomology of X into its even and odd part, H*(X;Q) =
H® @ H°, then

SHH"(X;Q) = S*(HY(X;Q) @ (HY(X;Q) © H*(X;Q)) © A*(H"(X;Q)),

where S and A on the right hand side have there ordinary meaning and S is taken in the
Z/2-graded sense on the left hand side. 0]

2.2 The Kummer variety revisited

Assume now that A is a 2-dimensional torus, A = C?/I". We keep the notation from the
previous section: Z is the blow-up of A x A along the diagonal, and Y = Z/(Z/2). In this
situation we have

m(A) =T =Z" and H'(A;Q) = A'Homy(T, Q).

Moreover, I'(A, Q) = A'C(dz,,dz,), where 2, z, are coordinates on the cover C* of A. It
follows from the discussion above, that 71 (V) = 7, (4)* = 7;(A), and that dim T'(Y, Q%) = 2.
More precisely, T'(Y, Q%) is generated by two 2-forms ¢’ and ¢” that are characterised by

p o’ = p*(pri(dz Adzy) + pry(dz; Adz))



and
Ix Il

p"o" = p"(pridz A prydzy — pridzy A pridz).
Note that o’ A o” =0 and 0"* = ¢"? = 2pr}(dz; A dz) Apri(dz A dzy).
Let + denote the group law on A. As + is commutative, the map

73 Ax A A

is Z /2-invariant and factors through p': 7 — Y and ¥ : Y — A. Let K, Kz and F denote
the fibres over 0 € A of the morphisms V¥ — A, 7 — A and A x A e A, respectively.
Clearly, F' = {(z, —z)|x € A}, and under the obvious isomorphism F = A the involution ¢
on F' corresponds to  — —x on A. Next, F' meets the diagonal A’ C A x A transversely in
the sixteen 2-torsion points, so that K is isomorphic to the blow-up of A in the 2-torsion
points. Passing to the quotient for Z/2-action it follows that K is isomorphic to the Kummer
variety introduced in section 1.4.

Let us pretend for a moment that we don’t yet know that K is a K3-surface and let us
compute m (K) and I'(K, Q3;) directly. This will be useful when we later go on to generalised
Kummer varieties.

Lemma 2.5 — 7 (K) =0.

Proof. Let t, : A — A denote the translation map x — x +a. The map t, xt,: Ax A —
A x A preserves the diagonal and, by the universal property of the blow-up, induces maps

tZ . 7 — Z and 2.V 5 Y. The following diagram is cartesian:

AxK =& Y

where m(a,y) := ¢t (y) and my is multiplication by 2: msy(a) = a + a. It follows that ¥ is
a fibre bundle with fibre K that is locally trivial in the étale topology. The first conclusion
that we draw from this is that K is smooth.
Next, every topological fibration gives rise to a long exact sequence of homotopy groups
(sets):
— m(A) — m(K) — (V) — 1 (A) — mo(K) —

Since K is connected and my(A) = 0, the following sequence is exact:
1 —m(K) —m((Y) > m(A) — 1.

But we have already seen that m(Y) =T = m;(A). Hence, necessarily, 7, (K) = 0. O

Lemma 2.6 — I'(K, Q) is one-dimensional and generated by the restriction of o' to K.
This form is non-degenerate.
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Proof. We keep the notation of the proof of Lemma 2.2: In a neighbourhood of a point in
the fibre p~1(0) C Y, we have coordinates u,v,s" and f, and the forms ¢’ and ¢” are given
by the formulae

o' =2du Adv+ds' Adt

and
o" =2du N dv — ds' A dt

In these coordinates, K is given by the equations u = 0 and v = 0. Thus s’ and ¢ are

coordinates on I, and we see that the form o'|x = —0”|x = ds’ A dt is non-degenerate. [

2.3 The Quot-scheme

Quotient schemes were introduced by Grothendieck as a technical tool for many constructions
in algebraic geometry. They generalise the notion of a Grassmann variety. A Grassmann
variety Grass(W, d) parametrises all quotient spaces of a fixed dimension d of a given vector
space W, and a quotient scheme Quoty (G, P) parametrises all quotient sheaves with a
fixed Hilbert polynomial P of a given coherent sheaf G.

We will need Quot schemes twice: Hilbert schemes are special cases of Quot schemes,
and moduli spaces of semistable sheaves are constructed as quotients of Quot schemes by an
action of a reductive group.

Let X be a projective scheme with an ample divisor H. If F'is a coherent sheaf, the
function

P(F):nw— x(F® Ox(nH))

is a polynomial, the Hilbert polynomial of F'. Fixing such a polynomial P essentially amounts
to fixing the topological invariants of F', i.e. rank and Chern classes. There are too many
coherent sheaves F' with P(F') = P to be parameterised by a noetherian scheme. However,
such a parameterisation is possible if we restrict ourselves to sheaves that are quotients of
a given sheaf G. A family of quotient sheaves of GG, parameterised by a scheme S, is a
coherent sheaf F on S x X together with a surjective homomorphism ¢ : Og ® G — F such
that F is S-flat and for each s € S the restriction k(s) ® F of F to the fibre {s} x X has
Hilbert polynomial P. Two such pairs (F,q) are equivalent, if they have the same kernel.
The reason why one works with quotient sheaves rather than subsheaves is that the tensor
product is right exact but not left exact. Hence if f : S’ — S is a base change map, then
the pull-back (f x idx)*q of a surjective map ¢ is again surjective, whereas the pull-back of
an injective homomorphism is, in general, no longer injective.
Formally, we get a functor

Quot, (G, P) := (Schemes)® —» (Sets)
S {0s®G — F|Fis S-flat, P(F,) = P for all s € S}.

Theorem 2.7 (Grothendieck [13]) — The functor Quot (G, P) is represented by a pro-
jective scheme Quoty (G, P).
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Let Q := Quoty y(G,P). That @Q represents the functor means that there is family
q:0gG — F that is universal in the following sense: For any family ¢ : Os®G — F there
is a unique morphism 1 : S — @ such that ¢ = (¢ x idx)*q. In this way families of quotient
sheaves parameterised by S correspond bijectively to morphisms S — Quoty (G, P).

Taking S = Spec(C), it follows that closed points in Quoty ;(G, P) correspond to iso-
morphism classes of quotients ¢ : G — F with P(F) = P.

Next, taking S = SpecC[z] with C[] = C[t]/(t?), we get an intrinsic description of the
Zariski tangent space of of the quot scheme at a point [¢ : G — F.

Corollary 2.8 — [¢] be a closed point in Quoty (G, P) represented by a surjective homo-
morphism q : G — F with kernel K. Then there is a natural isomorphism

Proof. A tangent vector to @ at [¢] is an C[g]-valued point in @, i.e. an epimorphism

G : G ®Cle] — F that restricts to ¢ at the special point of SpecC[z]. Thus tangent vectors
correspond to diagrams

0 0 0
T T T

0 — K — G 2 F — 0
T T T

0 — K — GoCd % F — 0
T T T

0 — ek — G — cF — 0
T T T
0 0 0

The flatness of F over C[e] is equivalent to the requirement that the first and the third
horizontal sequences are isomorphic. To give ¢ is the same as to fix K. As K always
contains €K, it is determined by giving a homomorphism K — <F. It follows that there is
a natural isomorphism

0

The group Aut(G) naturally acts on Quoty (G, P) from the right: if g € Aut(G) then

[q]-9:=1[qog] (1)
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Now, ¢ belongs to the isotropy group of [¢], if and only if ¢ and ¢ o g represent equivalent
surjective maps, i.e. if there is an automorphism ¢ : F' — F' such that the diagram

q

G —» F
o] E
G % F

commutes. As ¢ is surjective, ¢ is uniquely determined by ¢. In this way we obtain an
injective group homomorphism
Aut(G) — Aut(F) (2)

Quotient schemes will reappear in the context of moduli spaces of sheaves. For the
moment we specialise to Hilbert schemes of points.

2.4 Hilbert schemes

Let X be an irreducible projective surface and let n € Ny be a natural number that we
consider as a constant polynomial.

Definition 2.9 — Hilb"(X) := Quoty ;(Ox,n) is called the n-th Hilbert scheme of X.

Remark 2.10 — If X is a surface of Kahler type, the complex analytic analogues of Quot-
schemes were constructed by Douady [5]. The resulting moduli spaces are usually called
Douady spaces. It follows from results of Varouchas [23] that these Douady spaces are again
Kahler. The name Hilbert schemes is due to Grothendieck. As we will work in the algebraic
category throughout the lectures, we will stick to this terminology. All topological results
are valid in both categories.

Closed points in Hilb"(X) correspond to exact sequences
0— It — Ox — O — 0,

where I is the ideal sheaf of a zero-dimensional closed subscheme { C X of length ((§) :=
dime H°(O¢) = n. Since Hilb"(X) represents the functor of families of such subschemes
there is a universal subscheme =, C Hilb"(X) x X.

Any set of pairwise distinct points xq,...,z, € X defines a point in Hilb"(X). More
precisely, let U C X™ denote the open subset of all n-tuples of pairwise disjoint points. The
symmetric group &,, acts freely on U. The configuration space C, := U/&,, is a smooth
variety that embeds as an open subscheme into Hilb™(X). Thus we can think of the Hilbert
scheme as a particular way of compactifying the configuration space of unordered n-tuples
of distinct points on X. We will see shortly what happens when some of the points collide.

Corollary 2.8 specialises to

Corollary 2.11 — Let [{] € Hilb"(X) be a point corresponding to a closed subscheme
§ C X with ideal sheaf I and structure sheaf O = Ox /I¢. Then

TigHilb" (X) = Home, (I¢/IZ, O;).
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The following theorem is at the base of all the miraculous properties of the Hilbert
schemes. One should point out, that it fails if dim(X) > 3 and n > 4:

Theorem 2.12 (Fogarty [7]) — If X is an irreducible smooth surface, then Hilb"(X) is a
smooth irreducible variety of dimension 2n.

Proof. Since Hilb"(X) contains the configuration space as a smooth open subscheme of
dimension 2n, it suffices to prove the following assertions:

1. Hilb"(X) is connected.
2. dimg Tig Hilb™(X) = 2n for all [¢] € Hilb"(X).

Ad 1. In fact, this assertion is true for an arbitrary connected variety X. It can be proved
easily by induction on n, the case Hilb'(X) = X,q being obvious. Let ¢ € X be a subscheme
of length n, let # € X be an arbitrary point and A : Iy — k(z) a surjective homomorphism.
Then ker(A) is the ideal sheaf of a subscheme & of length n 4+ 1. Moreover, any subscheme
of length n + 1 arises in this way for some triple ({,x,)\). Let Iz be the ideal sheaf of
the universal subscheme = C Hilb"(X) x X. Recall that a point in the fibre of P(/z) over
(&,x) € Hilb"(X) x X is precisely a surjective homomorphism A : I — k(x). Mapping A to
the subscheme given by ker(\) defines a surjective morphism

Y P(Iz) — Hilb" (X)),

By induction, Hilb"(X) is connected. The fibres of the projection P(Iz) — Hilb"(X) x X
are projective spaces P(Iz @ k(z)) (of varying dimension) and hence connected. It follows
that P(Iz) and its image Hilb" ™' (X) are connected.

Ad 2. Using standard exact sequences we get

TigHilb"(X) = Hom(I¢, O¢) = Ext' (O, Op).

We need to show that dim Ext' (O, O;) = 2n. Since Hom(Og, O¢) = H°(O,) = C" and, by
Serre duality, Ext*(Og, O;) = H°(O; @ Kx)" = C", it suffices to show that

2
X(0g, 0¢) =~ dim Ext' (0, Og) = 0.

i=0
This follows from Hirzebruch-Riemann-Roch. O

For small n, one can describe Hilb™(X) more explicitly. The cases n = 0,1 are trivial:
Hilb?(X) consists of a single point, the empty subscheme in X, and subschemes of length 1
are closed points, so Hilb'(X) = X.

Points in Hilb?(X) either correspond to an unordered pair of distinct points in X, or to
a subscheme ¢ of length 2 supported at a point p € X. If m is the ideal sheaf of p and I the
ideal sheaf of ¢, we must have m D I D m?. Thus I is determined by a one-dimensional linear
subspace I/m” in the cotangent space T,X" = m/m?. These lines form a P'. Intuitively, we
may think of & as the limit of a sequence of pairs of points (pj, p/) that approach p along a
fixed tangent line through p.
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Recall the construction of section 2.1: Let p : Z — X x X be the blow-up along the
diagonal A" and let p' : Z — Y be the quotient map for the Z/2-action on Z. Then the
map p’ X (pryo)p’ is a closed immersion of Z into Y x X. The projection p’' : 7 — Y is
flat and and finite of degree 2. Associated to this family there is a classifying morphism
;Y — Hilb*(X). This is a bijection of smooth varieties and hence an isomorphism.

For n > 3, similar explicit constructions are not so readily at hand.

2.5 Punctual Hilbert schemes

We have two compactifications of the configuration space C,: The Hilbert scheme Hilb"(X)
and the symmetric product S™(X). They are related as follows. There is a morphism

P HIDY(X) — S™(X) = X"/6,, £ ) ((Of,) x

r€EE

that maps ¢ to its weighted support, in other words: p remembers the underlying subspace
of £ and the multiplicities but forgets the subscheme structures. This morphism is called the
Hilbert-Chow morphism. p, is an isomorphism over the open subscheme C, C S™(X).

We need to get some understanding of the fibres of p,. The worst fibre is H,, = p;"(n-p)
for some point p € X. It is clear that up to isomorphism H,, does not depend on X or p.
More general fibres of p, can then be expressed in terms of these H,: if u := Y n;z; € S"(X)
with distinct points xy,...,r, and multiplicities ni,...,n,, then p,'(u) = H,, x ... x H,,.

For small n, H, can be described explicitly. Let m denote the maximal ideal in Oy, for
p € X. Elements in H,, correspond to ideals I C m such that dimg Ox /I = n. Clearly, H,
consists of a single point {m}. And we have seen above that H, = P' = P(T,X) is the space
of tangent directions at p.

Let n = 3. There are two different types of points in Hj distinguished by dim 7,,¢ € {1,2}:
There is a unique point &, given by the ideal sheaf m?, with dim T,§ = 2. All others
correspond to ideals of the form I = (y+ ax+ S22, 2®) for some regular parameters x,y € m.
One can show that the set of points of this type forms a line bundle over the space P(m/m?).
Adding the point & compactifies this line bundle. In fact, H; is isomorphic to a cone in P*
of a twisted cubic line in P*: explicitly, let a,b,c,d,w be homogeneous coordinates in P*,
let S be the closed subscheme cut out by the polynomials ac — b?, ad — be, bd — 2, and let
Y C S x C? be the closed subscheme defined by the ideal.

T = (az + by + uy®, bx + cy — uzy, cx + dy + uz?) + (2,y)°.

Then ¥ is an S-flat family of subschemes of length 3 in X. The point (0:0:0:0:1) € S
parameterises the ideal (z,y)?, and the point (1 : s : s* : s* : t) parameterises the ideal
(x + sy +ty*, y*). Now S = H;.

For n > 4 the picture essentially remains the same though it gets more complicated in the
details: there is an open subset H, C H, that parameterises subschemes ¢ with dim 7, = 1.
Such ¢ can be characterised by the fact that & is contained in a smooth curve through p.
They are called curvilinear. In appropriate coordinates the ideal sheaf of £ can be written as
(y+arx+...,a,_12" "' 2™). Tt is not difficult to see that H}, is isomorphic to an affine bundle

over P(T,X) with fibre A2, Subschemes ¢ that are 'fat’ in the sense that dim T,§ = 2 are
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difficult to deschribe. The following theorem is therefore of great importance. One of its
consequences is that we have at least a dimension bound for the locus of non-curvilinear
points. This suffices for many purposes.

Theorem 2.13 (Briancon [3]) — The subscheme H), of curvilinear subschemes is open and
dense in H,. In particular, H, is irreducible of dimension n — 1.

Briancons’s theorem allows one to derive dimension estimates for the various strata of
the Hilbert scheme. Let Z,, . denote the locally closed subset of Hilb"(X) that consists
of all £ such that p(§) = >, n;x; with pairwise distinct points w;.

Corollary 2.14 — dim(Z,,  ,.) =n-+s.

Proof. The image p(Z,, .. ,.) is a smooth locally closed subscheme of S™(X) of dimension 2s.
Moreover, for any point . n;x; in the image, the fibre p™' (3, n;z;) =[], H,,, has dimension
> .;(n; —1) =n — s, by Briangon’s theorem. It follows that dim(Z,,  ,.) =n+s. O

.....

It follows that the locus of all £ € Hilb" (X)) where at least two points coincide is a divisor,
and that the locus of worse collisions than that is of codimension 2.

2.6 Beauville’s theorem

We are now ready to state and prove Beauville’s theorem.

Theorem 2.15 (Beauville) — Let X be a smooth projective surface and let n > 2.
1. m (Hilb" (X)) = 7y (X)),
2. There is an isomorphism

H?(Hilb(X); C) = H*(X;C) ® A’H'(X;C) @ C[E].

3. If X is a K3-surface, then Hilb" (X)) is an irreducible holomorphic symplectic manifold
of dimension 2n > 4 and second Betti number by(X) = 23.

Recall that we already discussed the case n = 2 in section 2.1 in detail. The point is that
by means of dimension arguments, we can essentially reduce everything to this special case.

Proof. Let X' be the open subset of X" consisting of all n-tuples (z1,...,x,) where at most
two of the x; are equal. Then the complement of X' has codimension 4 in X". Moreover,
let Al = {(21,...,2,) € X['|2; = a;} for i # j, and let A" = J;.; Aj;. Let p': B — X7
be the blowing-up of X along A’, and let E; := p'~'(Aj;) be the exceptional divisors,
E' =, Eij. The symmetric group &,, acts on B so that p' becomes equivariant.

Next, let p: X" — S"(X) be the quotient map for the &,, action, let S"(X), := p(X})
and A := p(A’). Note that A = p(A};) for any pair i > j. Now observe that locally near a
point in A, S™(X), is, up to an étale cover, isomorphic to S*(X) x X" 2. Thus, up to an
étale cover, the Hilbert-Chow morphism p,, : Hilb"(X) — S"(X) is isomorphic to

pa X idyn_s : Hilb*(X) x X" 2 — S*(X) x X" 2
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Over the open subset S"(X), the Hilbert-Chow morphism is the blow-up along A. (This is
infact true for all of S™(X), due to a theorem of Haiman, but much more difficult to prove.)
It follows that the quotient of B by &, is isomorphic to Hilb™(X), := p, (S™"(X),). We get
a commutative diagram

!

B Ly (XM,
[ J»
Hilb"(X), 2% S*(X),.

Let £ = p,'(A) = p/(E").

Note that the complements of Hilb"(X), and (X"), in Hilb"(X) and X" have com-
plex codimension 2 and 4, respectively. It follows that m(Hilb"(X),) = = (Hilb" (X)) and
m(XY) = m(X") = 7 (X)". Arguing precisely along the same lines as in section 2.1, it
follows that

T (Hilb"(X), \ E) Zm(X)" x &,,

and that gluing in a tubular neighbourhood of E introduces a transposition as additional
relation. It follows that

m (Hilb" (X)) = m (Hilb"(X),) = m (X)" % 6,/(6,)) = m (X)™.
The last isomorphism is again a consequence of the following algebraic lemma.
Lemma 2.16 — Let G be any group and n > 2. Then
G" xS, / (6,) = G/[G,G]=G™.
Proof. Exercise. 0
This proves part 1. of the theorem. In particular, if X is a K3-surface then
m (Hilb" (X)) = 0.

For the same codimension reasons the inclusions X' — X" and Hilb"(X), — Hilb"(X)
induce isomorphisms for all cohomology groups H*, i < 2. Blowing-up X' adds a direct
summand Q to H*(X]; Q) for each exceptional divisor Ej;;. One finds

H*(B;Q) = PriH (X:Q &P (priH'(X;Q) @ prj H'(X;Q) & QE,]) .
7 1>7

Then H*(Hilb"(X);Q) = H*(Hilb"(X),;Q) is the &,-invariant part of this vector space.
Note that G,, permutes all summands in the expected way but introduces an additional sign
whenever the two factors of a summand of the form H' ® H' are exchanged. This yields

H?(Hilb"(X); Q) = H*(X;Q) & A°H'(X;Q) & Q[E].
In particular, if X is a K3-surface, then

H2(Hilb'(X); Q) = H*(X,Q) & Q[E].
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Next, the restriction homomorphism T'(Hilb"(X),Q?) — T(Hilb"(X),,Q?) is an isomor-
phism by Hartogs’s theorem, since the complement of Hilb"(X), has complex codimension
2. Moreover, if ¢ is a 2-form on Hilb"(X) such that o|gip»(x), is non-degenerate then o is
also non-degenerate: namely, the degeneracy locus of ¢ is the locus where the adjoint map
Trir (x) — Q%Iﬂbn(x) fails to have maximal rank. This locus is therefore either empty or a
divisor cut out by the determinant of this bundle map. For dimension reasons no divisor
can be contained in the complement of Hilb"(X),. This proves the claim. Thus symplectic
structures on Hilb"(X) and on Hilb"(X), are the same. But now the same local calculations
an in section 2.1 show that there is a natural isomorphism

I(Hilb"(X),Q?) = T(Hilb"(X),, Q%) = T'(X2, Q%)% = ['(X, Q%) @ A’ T(X, Q%).

In particular, if X is a K3-surface, then T'(X, Q%) = 0 and hence F(Hilb"(X),Q%hlbn(X)) =
['(X,Q%). By the arguments just given, the symplectic structure on X induces a symplectic
structure on Hilb"(X). O

There are general results about the structure of H*(Y") for irreducible symplectic mani-
folds Y due to Bogomolov, Beauville, and others (see the lectures of Huybrechts in [12]). For
example, there is an integral quadratic form ¢ : H*(Y;Z) — Z of signature (3,b, — 3) that
generalises the intersection pairing of H*(K3;Z). By a theorem of Verbitsky, the subring
in H*(X;C), that is generated by H?(Y;C), is isomorphic to S*H?*(Y;C)/I, where I is the
ideal generated by o', for all « € H*(Y') with ¢(a) = 0.

On the other hand, much more is known for Hilbert schemes of K3-surfaces. By results of
Gottsche [9], Nakajima [20], and Grojnowski [11], there is a natural isomorphism of bigraded
vector spaces

DD 1 Hib(x; Q)" = 5° ( DD Q)ﬁm“’?qm) (3)

for an arbitrary smooth projective surface X, where formal variables ¢ and ¢ have been
thrown in in order to make the relevant bigrading transparent. The symmetric product has
to be taken in the ’super’ sense. This means that it is the symmetric product in the ordinary
sense on the even part of the cohomology (with respect to the cohomological grading) and the
alternating product on the odd part of the cohomology. Moreover, Nakajima and Grojnowski
show that a certain infinite dimensional Heisenberg algebra acts naturally on both sides of
equation (3) and that (3) is an isomorphism of representations of this Lie algebra. The ring
structure on H*(Hilb"(X); Q) for a K3-surface X was computed by Lehn and Sorger [17].
We refer to the lecture notes by Ellingsrud and Géttsche for a discussion of these results [6].

2.7 Generalised Kummer varieties

We come to Beauville’s second series.

Let A = C?/T be an abelian surface. The group structure + on A provides us with a
summation morphism A x ... x A — A, and since + is commutative, this morphism factors
through S™(A) — A. Let 3, : Hilb"(A) — S"(A) — A be the composition with the
Hilbert-Chow morphism.
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Definition 2.17 — Let n > 1. Then K,(A) := ¥,1,(0) is called the n-th generalised
Kummer variety.

For any a € A we have a translation morphism ¢, : A — A, x — x + a, and an induced

morphism ¢ : Hilb"(A) — Hilb"(A). Let m : A x K, — Hilb""'(4) be the morphism

m(a,x) = ¢lnt] (x). The following diagram is cartesian:

Ax K, (4A) —"— Hilb""(A)

J{prl J{En+1

tn+lu.
A _ (ADe A

This shows that ¥, ,, is a fibration with fibre K,(A) that is locally trivial in the étale
topology. In particular, K, (A) is a compact complex manifold of dimension 2n. We have

seen that K(A) is the classical Kummer variety. This explains the name for the higher
dimensional K, (A).

Theorem 2.18 (Beauville) — Let n > 2. Then K, (A) is an irreducible holomorphic sym-
plectic manifold of dimension 2n with by, = 7. Furthermore,

H2(K, (4):C) = H*(4:C) & CE'],
where E' = EN K,(A), E C Hilb"™'(A) denoting the exceptional divisor.
Proof. By the same arguments as in section 2.2 there is a short exact sequence
0 — 1 (K,(A)) — 7 (Hilb"" (A4)) — 71(A) — 0,

from which one deduces that 7, (K, (A)) since 7, (Hilb"**(A)) = 7,(A) = Z*. Recall that the
reasoning of the previous section show that there is an isomorphism

H?(Hilb""'(A); C) = H*(A;C) @ A’H'(A; C) @ CIE].
For an abelian surface H%(A;C) and A?H'(A;C) are naturally isomorphic.
There is a spectral sequence for the cohomology with twisted coefficients
B} = HP(A; {H(K,(A);C)}) = HPT(Hilb""!(A); C).
We know already that H'(K,(A);C) = 0, because K, (A) is simply-connected. The spectral
sequence therefore yields an exact sequence
0 — H2(A,C) == H2(Hilb" ™ (A); C) — H2(K,(A);C)".
One can show using Mayer-Vietoris type arguments that the natural map
H?(Hilb" ' (A); C) — H*(K,(A);C)

is surjective. It follows that H?(I,(A);C) is obtained from H?*(Hilb""'(A)) by cancelling
one of the two components H?(4;C).

Finally, a local calculation shows that the restriction of the symplectic structure to K, (A)
remains non-degenerate. 0]

The complete cohomology groups of K,,(A) have been computed by Gottsche and Soergel
[10]. The ring structure on H*(K,(A);C) has been described by Britze [4].



19

3 Moduli spaces of semistable sheaves

There is a different approach to Hilbert schemes that also gives a more conceptual explana-
tion why Hilbert schemes of K3 surfaces and generalised Kummer varieties have a natural
symplectic structure. To this end we need to introduce the concept of moduli spaces of
sheaves.

In general, the classification of coherent sheaves on a projective manifold splits into a
discrete and a continuous part: there is a discrete set of possible topological invariants of
a sheaf F' like its rank r(F’), i.e. the dimension of the fibre F, at the generic point n € X,
or its Chern classes ¢;(F) € H*(X,Z). Once the topological data are fixed, sheaves of
the same data appear in continuous families. More precisely, a family of sheaves on X
parametrised by a scheme S is an S-flat coherent sheaf F' € Coh(S x X). For each closed
point s € S one gets a sheaf F, := k(s) ® F on X, and we think of S as parameterising
the set {F,},cs. As we mentioned before, without further restrictions there are too many
sheaves to be parameterised by a noetherian scheme. The relevant restriction that is usually
imposed is that the sheaves be semistable. For a detailed discussion of semistable sheaves
and their moduli theory I refer to [15] and the references given therein.

3.1 Semistable sheaves

Let X be a projective manifold and let H be an ample divisor. The Hirzebruch-Riemann-
Roch theorem allows one to express the holomorphic Euler characteristic of coherent sheaves
F and G in terms of their ranks and Chern classes, namely

dim(X)
(F) = Y (1) dim (X ) = /X ch(F)td(X)
dim(X)
WFG) = 3 (1) dim Bxt'(F,G) = / ch(F)" ch(G)td(X),

where ¥V = (=1)" : H*(X;Q) — H*(X;Q). In particular, the Hilbert polynomial
P(F.n) = / M h(F)td(X)
X

is fixed by r(F') and ¢;(F'). For a surface X and a coherent sheaf F' of rank r and with Chern
classes ¢y, ¢y, one gets

1 1
P(F,n) = gHQnZ + (Hey — gKXH)n + (r\(Ox) = 51 Kx + 56 — )
X(F F) = r2x((’)x) —(2rco — (r — l)c%).

Definition 3.1 — Let X be projective manifold, H an ample divisor. A coherent sheaf
of rank r(F') > 0 is called stable (respectively semistable) if F' is torsion free and if for all
subsheaves F', 0 # F' # F', one has
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(resprectively <).

Here and in the following we write f < g (f < g) for two polynomials f and ¢ if
f(n) < g(n) (respectively <) for all n > 0. The quotient p(F) = P(F)/r(F) is called the
reduced Hilbert polynomial.

Any torsion free coherent sheaf F" has a unique filtration, the so-called Harder-Narasimhan
filtration, 0 = Fy C Fy C ... C F, = F such that all factors F;/F; | are semistable with a
decreasing sequence of reduced Hilbert polynomials:

p(F\/Fo) > p(Fy/Fy) > ... > p(Fi/F )

In this sense semistable sheaves can be thought of as building blocks for arbitrary torsion
free sheaves.

We have defined (semi)stability in terms of subsheaves. It is easy to see that one can
characterise (semi)stables sheaves equivalently by the following property: A torsion free sheaf
F is stable (respectively semistable) if for all surjections 7 : FF — F" to a torsion free sheaf
F" with F" # 0, ker(m) # 0, one has

P(F) _ P(F")

(respectively <).

Let F and F' be semistable sheaves with P(F)/r(F)= P(F')/r(F') and let p : F — F'
be a nontrivial Homomorphism. Being both a quotient sheaf of F' and a subsheaf of F’, the
image sheaf im(¢) must satisfy the following inequalities:

P(F) _ Plim(p) _ P(£)
g . g 1 .
r(F) = r(im(p)) = r(F)
Since the outer terms are equal, we have equality everywhere. In particular, if F' is stable,
it follows that F' = im(yp), i.e. ¢ must be injective, and if F' is stable, then im(p) = F",

i.e. o must be surjective, and if both F' and F’ are stable, ¢ must be an isomorphism. We
conclude:

Lemma 3.2 — If F and F' are stable sheaves with P(F') = P(F") then

C ,if F=F' and
Hom(F, F’) =
0 else.

Proof. The arguments given above show that if ¥ 2% F' then there are no non-trivial
homomorphisms from F to F'. Assuming to the contrary that F' = F’ we must argue that
End(F) = C. But again the discussion showed that any non-trivial endomorphism of F' is
an isomorphism. This means that End(F) is a finite dimensional skew field over C. But the
only finite dimensional skew field over C is C itself. O

A semistable sheaf F'is said to be strictly semistable, if it is not stable. By definition, a
strictly semistable sheaf F' admits an exact sequence

0—F —wF—F'—0,
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with semistable sheaves F' and F" that satisfy P(F")/r(F') = P(F)/r(F) = P(F")/r(F").
If F/ or F" are not stable, we can further decompose these sheaves, and iterating the process
we end up with a filtration, a so-called Jordan-Hoélder filtration,

O=FCF,C...CF,=F

with stable factors gr,(F) = F;/F;_y, all of the same reduced Hilbert polynomial. This
filtration is not unique, but the associated sheaf gr(F') = ®;gr;(F) is.

Definition 3.3 — Two semistable sheaves F' and F' are S-equivalent if gr(F) = gr(F").

The importance of S-equivalence is based on the following phenomenon:

Lemma 3.4 — Let F' be a semistable sheaf and let gr(F') be the sheaf associated to a
Jordan-Hélder filtration of F. Then there exists a family F parameterised by A', such that
fg = gI’(F) and JT|A1\{0} = OAl\{O} ® F.

Proof. For simplicity, we prove the lemma only for the case when the Jordan-Hélder filtration
has length 2, i.e. when F' fits into a short exact sequence

0—F —F—F'—0

with stable sheaves F', F" with the same reduced Hilbert polynomial. The general case
follows from an easy modification of the argument (exercise).

We write A = SpecC[t]. Consider the subsheaf F = F' @ C[t] + F @ tC[t] in the trivial
SpecClt]-family F' @ C[t]. Then F is flat over C[t] and

F for s 40
F, = 7

F'e F" for s =0.

O

A consequence of this lemma is that no moduli space could possibly separate F and gr(F').
That is, the best that one oculd expect is that the moduli space parametrises S-equivalence
classes.

We say that a semistable sheaf F' is polystable, if F' 22 gr(F). Thus F is polystable if
and only if it is of the form

with pairwise non-isomorphic stable sheaves F;. Clearly, every S-equivalence class of semi-
stable sheaves contains exactly one polystable sheaf up to isomorphism. As we saw above,
there are no homomorphisms form F; to F;. We can therefore note for later use:

Corollary 3.5 — Let F = @©,F"™ be a polystable sheaf with pairwise non-isomorphic
direct summands F;. Then

Aut(F) = [ ] GL(n;, ©).
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3.2 Moduli spaces

Let X be smooth projective surface endowed with an ample line bundle H = Ox(1). Fix
reN, ¢ € H*(X;Z) and ¢ € HY(X;Z) = Z.

A family of semistable sheaves of type (7, ¢y, ¢) parameterised by S is an S-flat coherent
sheaf F" on S x X such that for all s € S the fibre Fg = F'® O, is a semistable sheaf on X
with the given topological invariants. Two such families F' and F” are said to be equivalent
if there is a line bundle L on S such that F' = F ® prL. This defines a moduli functor

M y(r,¢1,¢0)  (Schemes)® — (Sets)

S +— {families of sheaves/S}/ ~

In general, this functor is not representable.

Theorem 3.6 (Gieseker) — There is a projective scheme My y(r, ¢y, ¢o) that corepresents
the functor My ,(r, ¢y, ;). Closed points in Mx p(r,cy,cp) are in natural bijection to S-
equivalence classes of semistable sheaves. The points corresponding to stable sheaves form
an open subset M5 y(r,c1,c2) C My y(r,c1,¢p). The scheme My y(r,cq,cy) is called the
moduli space of semistable sheaves.

We may associate to any scheme Y a functor
hy : (Schemes)” — (Sets), T + Mor(T, S).

The Yoneda Lemma states that mapping Y to hy embeds the category of schemes into
the category of contravariant functors on the category of schemes. A scheme M is said
to corepresent a functor M : (Schemes)’ — (Sets) if there is a natural transformation
1 : M — hj; such that any other transformation M — hy with some scheme Y factors
through a unique morphism M — Y. If M is represented by M, then M is also corepresented
by M, but in general not conversely. If (M, 1) corepresents M, then the pair (M,)) is
uniquely determined by this property up to a unique isomorphism.

The proof of this theorem is rather complicated. Let me give a very rough sketch of the
major steps in the construction of the moduli space. T will follow the method of Simpson:

1. Step: Given r,c;, ¢y one shows that there exists an mg such that for all m > mgy and
any semistable sheaf F' with these invariants one has the following properties:

F(m) is globally generated and H'(F(m —i)) = 0 for all i > 0.

This amounts to saying that the family of semistable sheaves with given topological data is
bounded. In the following fix m > my and let F' be any semistable sheaf with the given
invariants.

2. Step: Writing N := P(F,m) the evaluation map provides a canonical surjection
H(F(m)) ® Ox(=m) — F. Let G = Ox(—m)®". Every choice of a linear basis for the
vector space H°(F(m)) defines an isomorphism G = H°(F(m)) ® Ox(—m) and hence a
point [¢ : G — F| in Quoty (G, P). This point is determined only up to an action of
Aut(G) = GL(N, C) on the Quot scheme, given by [¢] - g := [q o g].

3. Step: One must show that there is a uniquely determined subscheme

QC QuOtX,H(Gv P)



23

with the following property (and this is the crucial part of the proof):

[q] € Q is a (semi)stable point in the sense of Mumford’s geometric invariant theory if and
only if F'is (semi)stable in the sheaf theoretic sense. Let Q*° C @ denote the open subset of
semistable points (in both senses). Then moreover, the orbit of a point [¢: G — F| € Q% is
closed in Q% if and only if F' is polystable.

4. In the last step, one then obtains the moduli space as the GIT-quotient

M = My y(r,c1, ) == Q% //GL(N, C).

We could as well just take the existence of the moduli space for granted. However, the
construction gives us slightly more, namely an intrinsic description of the germ of the moduli
space at a point [F] in terms of the sheaf F'.

3.3 Local description of the moduli space

Let [¢ : G — F] be a point corresponding to a polystable sheaf F = @, F;""". The orbit of
[q] is a smooth closed subschme of Q*°.

Lemma 3.7 — The stabiliser subgroup of [q] is isomorphic to Aut(F') = [, GL(n;, C).

Proof. We have seen earlier that there is a natural embedding of the stabiliser subgroup
into Aut(F'), cf. equation (2). To see that this map is also surjective, let o : FF — F be an
arbitrary isomorphim. Clearly, a induces an isomorphism & : H*(F(m)) — H°(F(m)) such
that the diagram

HY(F(m)) ® Ox(-m) — F

HY(F(m)) ® Ox(-m) — F

commutes. If ¢ : G — F is induces by u : C* — H°(F(m), let g =u 'odaou € GL(N,C).
Then g maps to a. ([l

Recall that the tangent space of Q*° at [¢] is naturally isomorphic to Hom (K, F'), where
K = ker(q). Infinitesimally, the action of GL(N,C) on Q*° is described by the composite
map

T.qAut(G) = End(G) = Hom(G, F) — Hom (K, F') = 117 Q"".
G,

The choice of m ensures that Ext'(G, F') = 0. Hence the cokernel of this map is isomorphic

to Ext'(F, F).
Luna’s Slice Theorem says that there is an Aut(F)-invariant locally closed subscheme
W C Q% containing [g] such that the orbit map

w XAut(F) GL(N, (C) — st

and the induced map
W//Aut(F) — M
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are étale. According to the considerations above, the tangent space to the slice W is isomor-
phic to Ext'(F, F).
Recall the following maps: We have Yoneda products

Ext'(F, F) x Ext/(F, F) = Ext,;(F, F)

and trace maps

Ext'(F, F) % H'(Ox).
If F is locally free then Ext’(F, F) = H'(X,&nd(F, F)), and the trace map is induced by the
trace map of sheaves of algebras End(F, F') — Ox. If F' is a more general torsion free sheaf

one uses locally free resolutions of F' to define the trace (cf. [15]). The Yoneda product and
the trace maps are invariant with respect to the conjugation action by Aut(F’). Moreover,

tr(a U B) = (=1)1Pltr(8U ).

For a semistable sheaf the trace maps are surjective, we denote by Exti(F, F')o there kernels.
Using these maps we can be more precise about the local structure of the moduli space
M near a point [F:
There is an Aut(F)-equivariant Kuranishi map

K (Ext'(F, F),0) — (Ext®(F, F),0)
such that
(M, [F]) = (k(0),0)//Aut(F)

Moreover, the Jacobian of the Kuranishi map vanishes, Dyx = 0, and the Hessian of the
Kuranishi map is given by
Dik(a, B) = aU B+ fUa.

3.4 Semistable sheaves on K3-surfaces

Let X now be a projective surface with Ky = Oy.

Let F be a stable sheaf of rank 7 and Chern classes ¢; and ¢,. The trace map Ext*(F, F) —
H?*(Oy) is Serre dual to the inclusion H°(Oy) — Hom(F, F'). But as F is stable this map
is an isomorphism. We conclude that Ext*(F, F), = 0. So the Kuranishi map vanishes
identically. Moreover, the conjugation action of Aut(F) = C* on Ext'(F, F) is trivial. It
follows:

Theorem 3.8 — Let [F] € My y(r, ¢y, c3) be a point corresponding to a stable sheaf. Then
Mx g(r,c1,¢o) Is smooth at [F|. There is a natural isomorphism

TiMx i (r,c1,¢5) = Ext!(F, F).
In particular,

dim M5 ;1 (r, c1,¢5) = dim Ext' (F, F) = (2rc, — (r — 1)¢}) + 2 — r°x(Ox).
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Corollary 3.9 — If X is a (3-surface then either My y(r, ¢y, ¢3) is empty or
dim M¥ (2, ¢1,¢2) = (deg — c%) — 6.

Theorem 3.10 (Mukai [19]) — Let X be a smooth projective surface with Kx = Ox. Then
M3 4 (7, c1,¢2) has a symplectic structure given pointwise by

Ext'(F, F) x Ext'(F,F) — C

(@, B) = o(tr(a U §)),

where o is the symplectic structure on X.

Skew-symmetry follows from the general properties of the Yoneda products and the trace
maps. Non-degeneracy is equivalent to Serre duality. Then one needs some technical argu-
ment to show that this pointwise defined 2-form is holomorphic and closed.

In general, the points in the moduli space corresponding to stable sheaves form an open
subscheme. If we choose the topological data (r, ¢y, ¢a) appropriately, the existence of strictly
semistable sheaves can be excluded for simple arithmetical reasons. For instance, if r = 2
and either ¢, or ¢; H is odd, then there cannot exist strictly semistable sheaves. In that case,
Mukai’s theorem gives us smooth compact manifolds with a symplectic structure! In fact,
we can recover the Hilbert schemes as a special case:

Lemma 3.11 — Let X be a K3-surface. Then My y(1,0,n) = Hilb"(X).

Proof. Any semistable sheaf F' of rank 1 is automatically stable. If ¢; = 0, the double dual
is a locally free sheaf of rank 1 with ¢; = 0 and hence isomorphic to Ox. As F' embeds into
its double dual, F'is isomorphic to an ideal sheaf I of some zero-dimensional subscheme Z.
Moreover, ¢y(I7) = length(Z). We obtain a bijective morphism Hilb"(X) — My (1,0, n).
As both varieties are smooth, this morphism is an isomorphism. O

Combining this lemma with Mukai’s theorem we obtain a new and more conceptual
explanation for the existence of a symplectic structure on Hilb™(X).

At this point there might be hope that Mukai’s construction gives us plenty of irreducible
holomorphic symplectic manifolds by letting run (r, ¢, c;) through N x H*(X,Z) x Z. Un-
fortunately, this is not so.

By theorems of Yoshioka, Huybrechts, Gottsche and others, all compact smooth moduli
spaces obtained by Mukai’s construction are deformation equivalent to Hilbert schemes.

With these negative or positive news, depending on the point of view, in mind, we are
left with the following examples of irreducible holomorphic symplectic manifolds:

1. K3-surfaces with dim = 2 and by, = 22.
2. Hilbert schemes Hilb™(K3) for n > 2 with dim = 2n and b, = 23.
3. Generalised Kummer varieties I,,(A) for n > 2 with dim = 2n and b, = 7.

(When I speak of these as if of isolated examples one should keep in mind that these manifolds
come in high dimensional families. See the lectures of Huybrechts of this workshop [14].) So
it came as a suprise when O’Grady found two more examples
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4. M of dimension 10 and by > 24. (See [21].)
5. My of dimension 6 and b, = 8. (See [22].)

From the classification point of view, the existence of these ’exceptional’ examples is a bit
scandalous. Before their appearance one could have hoped to show one day that Beauville’s
two series comprise all higher dimensional irreducible holomorphic symplectic manifolds. The
existence of O’Grady’s examples immediately raises the question whether there are others,
or, in case there are none, why this should be so.

4 O’Grady’s first example

The starting point for O’Grady’s construction is the set-up of Mukai’s theorem. That is,
we consider moduli spaces My (7, ¢, c2) of semistable sheaves on a K3-surface X. But in
contrast to the previous section this time we choose (7, ¢y, ¢3) in such way so as to ensure the
existence of strictly semistable sheaves. These will lead to singularities in the moduli space.
One could then try to resolve these singularities in such a way that the symplectic structure
on the smooth stable part of the moduli space extends to the whole resolution.

The simplest candidates for such an attempt are the moduli spaces M,, := Mx y(2,0,2n)
of semistable rank 2 sheaves with trivial determinant and even second Chern class. The
expected dimension for M; is (4c, — ) — 6 = 8n — 6. The cases n = 0 and n = 1
are degenerate: M, = {[Ox @ Ox]|} is a single point, and M; = {[[, ® [,]|z,y € X} is
isomorphic to S*(X). In both cases, there are no stable sheaves and the dimension is larger
than the expected dimension.

The situation is much better for n = 2, and indeed, M := M, is the main actor of this
section. The details of O’Grady’s work are complicated and rather involved. In this lecture
I will try to give an overview of the construction.

4.1 The global picture

I will discuss M in a top-down fashion. Recall that the expected dimension for M = M, is
8n —6=16—6 = 10.

Let M™ be the closed subscheme of points [F] corresponding to sheaves F that are not
locally free, and let AM®*® be the subscheme of points corresponding to strictly semistable
sheaves.

Theorem 4.1 — 1. M is irreducible of dimension 10.

2. M™" is an irreducible divisor in M. It admits a surjective morphism f : M™ — S*(X)
with general fibre P*.

3. M** is contained in M™ and equals the singular locus of M. It is isomorphic to
S?Hilb*(X). In particular, M has dimension 8, and Q := Sing(M**) is isomorphic to
Hilb*(X) and hence is itself smooth of dimension 4.
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That is, there is a stratification of M by closed subschemes
M > M™ > M >Q.

Here is a symbolic picture of M:

Proof. i. A point [F] € M is represented by a polystable sheaf F' that is not stable. Hence
there is a decomposition F = F; @ F, with stable sheaves F; of rank r(F;) = 1, and Chern
classes ¢1(F;) =0, co(F;) = 2. We know that such sheaves must be ideal sheaves F; = I, for
certain zero-dimensional subschemes Z; C X of length 2. In this way we get an embedding

S?(HIb* (X)) — M, (Zy,Zy) v [I5, @ 1],

whose image is precisely M**. The symmetric product of the Hilbert scheme has dimension
8. It is smooth except along the image of the diagonal embedding

A : Hilb*(X) — S*(Hilb*(X)).

The image of this diagonal in M** is Q. It follows also that M ¢ M"!f,
ii. A point [F]in M™\ M corresponds to a stable sheaf F that is not locally free.

Claim 4.2 — FYV 2 0%?

Proof. Let G := FV. The sheaf G is reflexiv. The locus where a given reflexive sheaf is not
locally free always has codimension > 3 and hence is empty in the present situation, so that
G is locally free. Let @ = G/F. Then @Q is a zero-dimensional sheaf of length 1 < ((Q) =
o(F) — (@) = 4 — co(G). It follows from the Hirzebruch-Riemann-Roch formula that
Y(G) = 2x(Ox) — ¢»(G) > 4 — 3 = 1. Hence either h°(G) > 0 or h?*(G) = hom(G, Ox) > 0.

If h°(@) > 0, there is a nontrivial and hence injective homomorphism ¢ : Oy — G. We
obtain a diagram

0 — Oy — G —> coker(p) — 0

T T T

O — I, — F — I — 0

with ideal sheaves I} = I'N F and I, = F/I; of subschemes Z; and Z, of lengths ¢; and
(y satistying (; 4+ (5 = 4. Since G/F is zero-dimensional, the same is true for coker(y)/I5.
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Thus, if T C coker(y) is the torsion submodule, T" cannot be 1-dimensional. If T were
non-trivial and zero-dimensional, then the kernel L of the surjection G — coker(y)/T would
be locally free as the first sysygy module of a torsion free sheaf on a surface and would
contain Oy as a subsheaf in such a way that Oy = L outside a zero-dimensional subset of
X. This is impossible. We conclude that T = 0. Hence coker(y) is torsion free with Chern
classes ¢; = 0 and ¢y = ¢»(G). Necessarily coker(¢) = I for some subscheme 7' C X.
The inclusion I, — I, is equivalent to Z, D Z'. Since F is stable, we must also have
(, > (5. Either Z' =) and G = OF?, or (; = 1, Z' = {x} for some point € X. But since
Ext'(I,,Ox) = 0, we would have G = Oy @ I, contradicting the fact that G is locally free.
Hence G = 0>

Clearly, the assumption hom(G, Ox) > 0 leads into the same track of arguments. 0

Hence if [F] € M™ \ M*5 then F fits into a short exact sequence
0—F -0 —Q—0

where @) is a coherent sheaf of zero-dimensional support and length 4. If [F] € M the
same is also true since we know the much stronger statement F' = I, @ I, for subschemes
Z; C X of length 2. Mapping F to the support of Q defines a morphism f : M™" — S*(X).
Clearly, f is surjectiv since already the restriction f|y : M** = S?Hilb*(X) — S*X is
surjective.

Claim 4.3 — If x;,...,x4 € X are pairwise distinct, then the fibre of f over the point
(z1,...,24) € S*(X) is isomorphic to P'.

Proof. Any sheaf @ of length 4 with support in {zy,..., 24} must be isomorphic to k(z,) ®
... @ k(). To give a surjection OF* — @ is then the same as to give four surjective forms
(;:C> = C,i=1,...,4. Two such tuples define the same subsheaf of (9;’?2, if they define the
same point in (P')* and two points ([(1],...,[l]), ([¢1],...,[¢4]) € (P")* define isomorphic
subsheaves if and only if there is an element g € PGL(2,C) such that [(;] = g[¢;] for all i.

The sheaf F' defined by ([(],...,[l4]) is semistable if and only if no three of the [¢;] are
equal, and F' is stable if and only if the [(;] are pairwise distinct (exercise !).

Thus the fibre of f over (xy,...,x4) is the quotient of the space

{([t1], ..., [s]) € (P")*|no three of the [(,] are equal}

by the action of PGL(2,C). This is a classical problem of invariant theory which has the
following well-known solution: The quotient is isomorphic to P!, the orbit map being given
by the cross ratio between the [¢;]. O

Summing up, we see that M™ is of dimension 9. Moreover, we see that, after all, stable
sheaves do exist, so that M? is not empty, smooth of dimension 10 and equipped with a
symplectic form by Mukai’s argument. O

4.2 The local picture
With respect to their automorphism group we may distinguish three types of points in M:
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1. [F] e M\ M*® < Aut(F) = C".
2. [Fle M\ Q & F=1,3 1y with Z #W & Aut(F) = C* x C*.
3. [Fle Qe F=12% & Aut(F) = GL(2,0C).

We will determine the local structure of M at [F] for all three types.
1. We know already that M is smooth at [F| whenever F is stable.
2. Let F =1, ® Iy with Z,W € Hilb*(X), Z # W. Then

Hom(Iy, Iyy) = Ext*(Iy,I,)" = 0.

It follows from the theorem of Hirzebruch-Riemman-Roch that dim Ext'(I,,Iy) = 2. We
have decompositions

Ext!'(F,F) = BExt' (I, 1) ® Ext' (I, Iy) ® Bxt' (I, 1) @ Ext' (Iy, Iy)

and
Ext®(F, F) = Ext*(I5, ;) ® Ext®(Iy, Iy).

The components Ext! (I, 1,) and Ext'(Iyy, Iyy) correspond to deformations of F' within the
smooth strictly semistable part M**\ Q. We are mainly interested in the structure of a
slice transversal to M*®® in M. The Zariski tangent space to such a slice is isomorphic to
Ext' (I, Iy) @ Ext!(Iy, I ).

Elements (s,t) € Aut(F) = C* x C* act on Ext' (I, Iyy) @ Ext' (I, I,) as (s t, st ),
and trivially on Ext?(F, F). Note that Ext'(I,y, I) is dual to Ext!(I,, I;y). Let 21,25 be a
basis of Ext!(I,, Iy) and let y;,%, be a dual basis of Ext'(I,, I;). The invariant functions
with respect to the action of Aut(F') are generated by

O =11Y1, 0 = T1Y2, Y = TaY1, 0 = Taya.
These satisfy the relation ad — 3y = 0. The quadratic part of the Kuranishi map
ko Ext' (I, Iy) @ Bxt' (I, I;) — C

is given by (v,w) — vUw — w U v, or, expressed in the coordinates just introduced: ko =
1Y+ 22y, = a+0. We see that locally a slice to M*®*® is modelled by nilpotent 2 x 2-matrices.
Hence

(M, [F]) = (C%,0) x A;-singularity.

3. Let F = I, ®1;, Z € Hilb’(X). Let V be a two-dimensional vector space and
write F' = I, ® V. Then Aut(F) = Aut(V) acts on Ext'(F,F) = Ext'(I;,1;) ® End(V)
via conjugation on the second factor. The diagonal part Extl([Z, I7) ®1idy corresponds to
deformations that are tangent to € = Hilb? (X). Let z;, i =1,...,4, be a symplectic ba-
sis of Ext'(I,,1,). Then we can think of Ext'(I,, ;) ® End(V), as the space of 4-tuples
(Aq, ..., Ay) of traceless matrices, where A; corresponds to the coordinate z;. The automor-
phism group Aut(V') acts on these tuples by simultaneous conjugation. The quadratic part
of the Kuranishi map

Ext'(I,1,) @ End(W), — End(V),
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is given by
(A1, Ay, A3, Ay) = [A, As] + [As, Ayl

Disregarding higher order terms we get the following description of the germ of M at [F]:
(M, [F]) = {(Ay, Ay, As, Ay) € M(2,C)™ [[Ay, Ao] + [A3, Ay] = 0}/ ~

where ~ stands for simultaneous conjugation. One can show that there are no higher order
terms in the Kuranishi map [16] so that our mistreatment of these terms in the present
discussion is justified.

We have now gained a rather precise idea of the nature of the singularities that one
encounters on M. Along the stratum M we find an A,-singularity transversally to A/™f
that can be easily resolved by a single blowing-up of M™\ Q in M \ Q. The singularity
transversally to €2 is less trivial. From this discussion it should be clear how to describe by
explicit equations the singularities that appear in other, more complicated moduli spaces of
sheaves on K3-surfaces.

4.3 Resolution of the singularities
O’Grady shows that there is a resolution 7 : M — M with the following properties:

1. Over M \ Q, 7 is the blow-up along M®* \ Q. We have seen that transversely to M**,
M is an A; singularity. It should not come as a suprise, though there is most certainly
something to prove here, that the symplectic structure on the stable part of M* extends
over the exceptional divisor of this blow-up.

2. The fibre of m over a point in € is isomorphic to a quadric in P*. In particular,
dim(7*(Q)) = 7. Thus once the extension problem for the symplectic form over
7 (M= \ Q) is solved it is clear that the symplectic form also extends over 7~ '(Q)
by Hartog’s theorem.

The method he imploys is too complicated to be explained in the present lecture course.
Suffice it to say that instead of blowing-up subschemes of M, O’Grady works on the Quot
scheme and applies techniques of F. Kirwan to control the GIT-quotient of the modified
Quot scheme. .

In order to see that M is indeed a new example of an irreducible holomorphic symplectic
manifold one needs to show first of all that M is indeed an example, i.e. that M is simply
connected and that the space of holomorphic 2-forms is one-dimensional, and secondly, that
this is a new example in the sense that it is not deformation equivalent to the previously
known examples. Let me finish by indicating how the second question is solved:

Besides M there exists another type of moduli space M*** that classifies u-semistable
sheaves. This moduli space is often called the Donaldson-Uhlenbeck compactification of the
space of stable locally free sheaves. Since every semistable sheaf is a fortiori p-semistable
there is a classifying morphism p : M — M*#"**. This morphism is a generalisation of the
Hilbert-Chow morphism Hilb"(X) — S"(X). J. Li [18] gave an algebraic definition of A/#**
and described the fibres of p. It turns out in the present context that p is an isomorphism
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on the locally free part, and that two non-locally free sheaves F' and E are identified if
Supp(FYY/F) = Supp(E"Y/E). More specifically, the restriction of p to the divisor M™ is
the map f : M™ — S*(X) discussed above.

Thus we have two morphisms

M —s M —s M,

Both of them contract a divisor to a 2-codimensional subset. Applying gauge theoretic
arguments, O’Grady concludes that Donaldson’s p-map

e Hy(X;Q) — H(M™*;Q)

is injective. In particular, we must have b,(M*"**) > 22. Since we lose a divisor in each of
the contractions above, it follows that by(M) > 23 and by(M) > 24. Hence M cannot be
deformation equivalent to a Hilbert scheme!

4.4 Epilog

O’Grady’s second example is related to first. Let A be an abelian surface and consider the
moduli space M4 y(2,0,1). The expected dimension is

dim M} ;(2,0,1) = (2ree — (r— l)c?) +2— r2x((’)X)
8—-0+2-0=10

according to theorem 3.8. This moduli space admits a mapping b: M4 5(2,0,1) — A x A",
which sends F to (cy(F),det(F')), where we take the second Chern class as an element in
the albanese variety Alb(A) = A. Now let M = b '((0,0)). This is reminiscent of the
construction of the generalised Kummer varieties. M is a 6-dimensional variety. It singular
along the four dimensional image of the morphism

Ax AV M, (z,L) = [(I,® L) ® (I_, @ L)].

Clearly, this map factors through the quotient for the Z/2-action (x,L) — (—z,L") on
A x AY. A pattern at least similar to the first example begins to appear. Nevertheless the
details are again rather involved. I will leave it at this point.

Driven by the success of O’Gradys idea one could try to resolve the singularities of
Mx 1(2,0,2n) for n > 3 for X a K3-surface. O’Grady writes that he didn’t succeed in
finding a symplectic resolution and conjectures that none exists. This one can prove [16].
The question remains open as to whether other constructions could be more successful.

Try!
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